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The Imputation Phase 
of Multiple Imputation

7.1 CHAPTER OVERVIEW

Recall from previous chapters that maximum likelihood estimation uses a log-likelihood 
function to identify the population parameter values that are most likely to have produced 
the observed data. The estimation process essentially auditions different parameter values 
until it identifi es the estimates that minimize the standardized distance to the observed data. 
This process does not involve imputation. Rather, maximum likelihood estimates the param-
eters directly from the available data, and it does so in a way that does not require individuals 
to have complete data records. Multiple imputation is an alternative to maximum likelihood 
estimation and is the other state-of-the-art missing data technique that methodologists cur-
rently recommend (Schafer & Graham, 2002). The imputation approach outlined in this 
chapter makes the same assumptions as maximum likelihood estimation—missing at ran-
dom (MAR) data and multivariate normality—but takes the very different tack of fi lling in the 
missing values prior to analysis.

A multiple imputation analysis consists of three distinct steps: the imputation phase, 
the analysis phase, and the pooling phase. Figure 7.1 shows a graphical depiction of the 
process. The imputation phase creates multiple copies of the data set (e.g., m = 20), each of 
which contains different estimates of the missing values. Conceptually, this step is an itera-
tive version of stochastic regression imputation, although its mathematical underpinnings 
rely heavily on Bayesian estimation principles. As its name implies, the goal of the analysis 
phase is to analyze the fi lled-in data sets. This step applies the same statistical procedures 
that you would have used had the data been complete. Procedurally, the only difference is 
that you perform each analysis m times, once for each imputed data set. The analysis phase 
yields m sets of parameter estimates and standard errors, so the purpose of the pooling 
phase is to combine everything into a single set of results. Rubin (1987) outlined relatively 
straightforward formulas for pooling parameter estimates and standard errors. For example, 
the pooled parameter estimate is simply the arithmetic average of the m estimates from the 



188 APPLIED MISSING DATA ANALYSIS

analysis phase. Combining the standard errors is slightly more complex but follows the same 
logic. The process of analyzing multiple data sets and pooling the results sounds very tedious, 
but multiple imputation software packages completely automate the procedure. The imputa-
tion phase is arguably the most diffi cult aspect of a multiple imputation analysis, so I devote 
Chapter 7 to this topic and outline the analysis and pooling phases in Chapter 8.

Multiple imputation is actually a broad term that encompasses a collection of tech-
niques. The three-step process (i.e., imputation, analysis, pooling) is common to all multiple 
imputation procedures, but methodologists have proposed a variety of algorithms for the 
imputation phase (King, Honaker, Joseph, & Scheve, 2001; Lavori, Dawson, & Shera, 1995; 
Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; Royston, 2005; Schafer, 1997, 
2001; van Buuren, 2007). These algorithms address different types of problems (e.g., cate-
gorical versus continuous data, longitudinal versus cross-sectional data, monotone missing 
data patterns versus general patterns), so no single procedure works best in every situation. 
Because the normal distribution is arguably one of the most widely used data models in the 
social and behavioral sciences, I devote this chapter to an imputation approach that assumes 
multivariate normality. This so-called data augmentation algorithm (Schafer, 1997; Tanner & 
Wong, 1987) is perhaps the most widely used imputation approach and is readily available 
in a number of commercial and freeware software packages. I briefl y outline a few alternative 
imputation algorithms in Chapter 9.

As an important aside, researchers often object to imputation on grounds that the pro-
cedure is somehow cheating by “making up data.” This concern is ungrounded for at least 
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FIGURE 7.1. Graphical depiction of a multiple imputation analysis. The imputation phase creates 
multiple copies of the data set (i.e., m = 20) and imputes each with different missing values. The analy-
sis phase estimates the model parameters using each of the complete data sets. The pooling phase 
combines the parameter estimates and standard errors into a single set of of results.
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three reasons. First, it is important to remember that the primary goal of a statistical analysis 
is to estimate the population parameters. In truth, multiple imputation is nothing more than 
a mathematical tool that facilitates that task, so imputation itself is ancillary to the end goal. 
Second, multiple imputation and maximum likelihood estimation are asymptotically (i.e., in 
very large samples) equivalent and tend to produce the same results. The fact that the two 
procedures—only one of which fi lls in the data—are effectively interchangeable underscores 
the point that imputation is not inherently problematic. Finally, unlike other imputation rou-
tines, multiple imputation explicitly accounts for the uncertainty associated with the missing 
data. By repeatedly fi lling in the data, multiple imputation yields parameter estimates that 
average over a number of plausible replacement values, so the process never places faith in a 
single set of imputations. This is in stark contrast to imputation techniques that treat a single 
set of fi lled-in values as real data (e.g., the single imputation methods from Chapter 2).

I use the small data set in Table 7.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario where prospective employees complete 
an IQ test and a psychological well-being questionnaire during their interview. The company 
subsequently hires the applicants that score in the upper half of the IQ distribution, and a 
supervisor rates their job performance following a 6-month probationary period. Note that 
the job performance scores are missing at random (MAR) because they are systematically 
missing as a function of IQ scores (i.e., individuals in the lower half of the IQ distribution 
were never hired and thus have no performance rating). In addition, I randomly deleted three 
of the well-being scores in order to mimic a missing completely at random (MCAR) mecha-
nism (e.g., the human resources department inadvertently loses an applicant’s well-being 
questionnaire). This data set is far too small for a serious application of multiple imputation, 
but it is useful for illustrating the basic mechanics of the imputation phase.

TABLE 7.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94  3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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7.2 A CONCEPTUAL DESCRIPTION OF THE IMPUTATION PHASE

Rubin (1987) developed multiple imputation in the Bayesian framework, and data augmen-
tation relies heavily on Bayesian methodology. The imputation phase has relatively intuitive 
logic (e.g., repeatedly impute the data and update the parameters), but its reliance on Bayes-
ian principles can make it diffi cult to grasp. This section gives a conceptual description of 
data augmentation that does not rely on Bayesian statistics. The goal of this section is to lay 
the foundation for the more precise explanation that I give in the next section, but also to 
provide an overview of data augmentation for researchers who want to use multiple imputa-
tion without necessarily mastering its mathematical underpinnings. I use the IQ and job per-
formance scores from Table 7.1 to illustrate the imputation phase. A bivariate analysis with a 
single incomplete variable is a very basic application of data augmentation, but the ideas in 
this section readily generalize to multivariate analyses.

The I-Step

The data augmentation algorithm is a two-step procedure that consists of an imputation step 
(I-step) and a posterior step (P-step). Procedurally, the I-step is identical to the stochastic 
regression procedure from Chapter 2. Specifi cally, the I-step uses an estimate of the mean 
vector and the covariance matrix to build a set of regression equations that predict the in-
complete variables from the observed variables. The bivariate analysis example is straightfor-
ward because there is only one pattern with missing data (the subset of cases with missing 
job performance scores), and thus only one regression equation. The imputation equation is

 JPi* = [β̂0 + β̂1(IQi)] + zi (7.1)

where JPi* is the imputed job performance rating for case i, the brackets contain the regres-
sion coeffi cients that generate the predicted job performance rating for that individual, and 
zi is a random residual from a normal distribution. The normal curve that generates the re-
siduals has a mean of zero and a variance equal to the residual variance from the regression 
of job performance on IQ (i.e., σ2

JP|IQ). Consistent with stochastic regression imputation, 
substituting an IQ score into the bracketed terms yields a predicted job performance rating. 
The predicted scores fall directly on a regression line (or a regression surface, in the multivari-
ate case), so adding a normally distributed residual term to each predicted value restores 
variability to the imputed data.

The P-Step

The ultimate goal of the imputation phase is to generate m complete data sets, each of which 
contains unique estimates of the missing values. Creating unique imputations requires dif-
ferent estimates of the regression coeffi cients at each I-step, and the purpose of the P-step is 
to generate alternate estimates of the mean vector and the covariance matrix (the building 
blocks of the I-step regression equations). Although this process relies heavily on Bayesian 
estimation principles, it is straightforward to understand at a conceptual level. Specifi cally, 
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the P-step begins by using the fi lled-in data from the preceding I-step to estimate the mean 
vector and the covariance matrix. Next, the algorithm generates a new set of parameter values 
by adding a random residual term to each element in !̂ and "̂. Randomly perturbing the 
parameter values is akin to drawing a new set of plausible estimates from a sampling distribu-
tion (or alternatively, a posterior distribution).

To illustrate the P-step in more detail, suppose that the mean and the variance of the 
fi lled-in job performance scores from a particular I-step are µ̂JP = 10 and σ̂2

JP = 9, respectively. 
The sampling distribution (or in the Bayesian context, the posterior distribution) of the mean 
is a normal curve with a standard deviation of σ̂/√��N, so a new sample of 20 job performance 
scores should produce a mean that deviates from the current estimate by 3/√�2�0 = 0.67 
points, on average. To generate an alternate estimate of the mean, the P-step uses Monte 
Carlo simulation to draw a random residual term from a normal distribution with a mean of 
zero and a standard deviation of 0.67. Adding this residual to µ̂JP = 10 gives a new estimate 
of the job performance mean that randomly differs from that of the fi lled-in data. The same 
process generates new covariance matrix elements, but these parameters require a different 
residual distribution (the inverse Wishart distribution from Chapter 6).

Adding residual terms to the elements in the mean vector and the covariance matrix 
produces parameter values that randomly differ from those that produced the regression 
coeffi cients at the preceding I-step. Carrying the updated estimates forward to the next I-step 
yields a new set of regression coeffi cients and a different set of imputations. The new imputa-
tions carry forward to the next P-step, where the algorithm generates another set of plausible 
parameter estimates. Repeating this two-step procedure a large number of times creates mul-
tiple copies of the data, each of which contains unique estimates of the missing values.

7.3 A BAYESIAN DESCRIPTION OF THE IMPUTATION PHASE

The previous description of the data augmentation algorithm is conceptual in nature and 
omits many of the mathematical details. This section expands the previous ideas and gives a 
more precise explanation of the I-step and the P-step. In particular, I illustrate how the Bayes-
ian estimation principles from Chapter 6 apply to the imputation phase. In doing so, I con-
tinue to use the IQ and job performance scores from Table 7.1. Again, a bivariate analysis 
with a single incomplete variable is a very basic example, but surprisingly few changes occur 
when applying data augmentation to multivariate data.

The I-Step

As I explained in the previous section, the computational details of the I-step are identical to 
stochastic regression (i.e., use regression equations to predict the incomplete variables from 
the observed variables and add random residuals to the predicted scores). To illustrate the 
imputation process graphically, the top panel of Figure 7.2 shows a scatterplot of a set of 
imputed job performance ratings. The solid regression line corresponds to the predicted job 
performance scores (i.e., the values generated by the bracketed terms in Equation 7.1), and 
the dashed lines represent the random residuals (i.e., the zi values).
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From a Bayesian perspective, the imputed values are random draws from a conditional 
distribution that depends on the observed data and the estimates of the mean vector and the 
covariance matrix at a particular I-step. (Bayesian texts sometimes refer to this distribution as 
the posterior predictive distribution.) The bottom panel of Figure 7.2 imposes normal re-
sidual distributions over the regression line at IQ values of 80, 90, and 100. Each of the 
normal curves represents the conditional distribution of job performance ratings, given the 
particular IQ score on the horizontal axis (i.e., the distribution of performance ratings for a 
hypothetical subsample of cases that share the same IQ). The regression line intersects each 
distribution at its mean, so the predicted job performance ratings (i.e., the bracketed terms 
in Equation 7.1) are conditional means (i.e., the expected performance rating for a hypo-
thetical subsample of cases that share the same IQ). The normal curves represent the distri-
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FIGURE 7.2. The top panel shows a hypothetical imputed data set. The solid regression line de-
notes the predicted job performance scores, and the dashed lines represent the random residuals. The 
bottom panel shows normal curves imposed over the regression line at IQ values of 80, 90, and 100. 
These curves represent the conditional distribution of job performance ratings at three different IQ 
scores (i.e., the distribution of performance ratings for a hypothetical subsample of cases that share the 
same IQ). The imputed values are random draws from the conditional distributions.



 The Imputation Phase of Multiple Imputation 193

bution of the residuals, so adding a zi value to each predicted score effectively simulates a 
random draw from a distribution of plausible replacement values that is contingent on the 
observed IQ data.

More formally, the following equation summarizes the I-step

 Yt* ∼ p(Ymis|Yobs, θ*t–1) (7.2)

where Yt* represents the imputed values at I-step t, Ymis is the missing portion of the data 
(e.g., the missing job performance ratings), Yobs is the observed portion of data (e.g., the ob-
served IQ scores), and θ*t–1 denotes the mean vector and the covariance matrix from the 
preceding P-step (i.e., the parameter values that generate the imputation regression equa-
tions). In words, Equation 7.2 says that the imputed values at a particular I-step are random 
draws from a distribution (the ∼ symbol means “distributed as”) of plausible replacement 
values that depends on the observed data and the current parameter estimates. Regardless of 
how you conceptualize the I-step, the computational details amount to stochastic regression 
imputation.

The P-Step

The P-step is essentially a standalone Bayesian analysis that describes the posterior distribu-
tions of the mean vector and the covariance matrix. Recall that a Bayesian analysis consists 
of three steps: specify a prior distribution, estimate a likelihood function, and defi ne the 
posterior distribution. This section presents the relevant posterior distributions but provides 
no background on their derivations. Chapter 6 describes the Bayesian analytic steps in some 
detail, so it may be useful to review Sections 6.8 through 6.10 before proceeding.

Creating multiple sets of imputed values requires different estimates of the mean vector 
and the covariance matrix at each I-step, and the purpose of the P-step is to generate alternate 
parameter values. The Bayesian framework is ideally suited for this task because it views a 
parameter as a random variable that has a distribution of values. In the previous section, I 
stated that the P-step generates new parameter estimates by adding a random residual term 
to each element in !̂ and "̂. This description is conceptually accurate, but mathematically 
imprecise. More accurately, the P-step randomly draws a new mean vector and a new covari-
ance matrix from their respective posterior distributions. Throughout the chapter, I refer to 
these new estimates as simulated parameters because Monte Carlo computer simulation 
techniques generate their values.

To begin, the P-step uses the fi lled-in data from the preceding I-step to compute the 
sample means and the sample sum of squares and cross products matrix (i.e., !̂ and #̂, re-
spectively). Having obtained these quantities, note that the posterior distribution of the co-
variance matrix is

 p("|!̂, Y ) ∼ W–1(N – 1, #̂) (7.3)

where p("|!̂, Y ) denotes the posterior, !̂ is the vector of sample means, Y is the fi lled-in data 
matrix from the preceding I-step, ∼ W –1 represents the inverse Wishart distribution, N – 1 is 
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the degrees of freedom (i.e., the distribution’s expected value), and #̂ is the sample sum of 
squares and cross products matrix (i.e., the matrix that defi nes the spread of the distribu-
tion). Notice that this posterior distribution has the same form as the one from Chapter 6 
(see Equation 6.20). Having defi ned the shape of the posterior distribution, the data aug-
mentation algorithm uses Monte Carlo simulation techniques to “draw” a new covariance 
matrix from the posterior. Procedurally, this amounts to using a computer to generate a 
matrix of random numbers from the distribution in Equation 7.3. To avoid confusion with 
the sample estimates, I denote the simulated covariance matrix as "*.

The algorithm uses a similar procedure to create a new set of means. Specifi cally, the 
sample means and the simulated covariance matrix defi ne the posterior distribution of the 
mean vector, as follows:

 p(!̂|Y, ") ∼ MN(!̂, N–1"*) (7.4)

where p(!̂|Y, ") is the posterior, ∼ MN denotes a multivariate normal distribution, !̂ is the 
vector of sample means, and "* is the simulated covariance matrix. Again, this posterior 
distribution is the same as the one described in Chapter 6 (see Equation 6.9). Finally, Monte 
Carlo computer simulation techniques generate a new set of means from the distribution in 
Equation 7.4. I denote the resulting estimates as !̂*.

After drawing new parameter values from the posterior distributions, the subsequent 
I-step uses the updated estimates to construct a new set of regression coeffi cients and a dif-
ferent set of imputations. The new imputations carry forward to the next P-step, where the 
algorithm draws another set of plausible parameter estimates. Repeating the two-step proce-
dure a number of times generates multiple copies of the data, each of which contains unique 
estimates of the missing values.

More formally, the following equation summarizes the P-step

 $t* ~ p($|Yobs, Yt*) (7.5)

where $t* denotes the simulated parameter values from P-step t (i.e., !* and "*), Yobs is the 
observed data (e.g., the observed IQ scores), and Yt* contains the imputed values from the 
preceding I-step. In words, Equation 7.5 says that the simulated parameter values from 
P-step t are random draws from a distribution that depends on the observed data and the 
fi lled-in values from the preceding I-step. A lack of familiarity with Bayesian estimation can 
make it diffi cult to grasp the nuances of the P-step, but the process described above is con-
ceptually straightforward: use the fi lled-in data to estimate the mean vector and the covari-
ance matrix and generate a new set of plausible parameter values by adding a random residual 
to each element in !̂ and "̂.

7.4 A BIVARIATE ANALYSIS EXAMPLE

Having outlined data augmentation in more detail, I use the IQ and job performance scores 
in Table 7.1 to illustrate a worked example. Multiple imputation software programs fully 
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automate the data augmentation procedure, so there is no need to perform the computa-
tional steps manually. Nevertheless, examining what happens at each step of the process is 
instructive and gives some insight into the inner workings of the “black box.”

Consistent with a maximum likelihood analysis, data augmentation requires an initial 
estimate of the mean vector and the covariance matrix to get started. For reasons discussed 
later, maximum likelihood parameter estimates make good starting values, so I use the esti-
mates from Chapter 4 for this purpose.

 
!̂0

 = [µ̂IQ] = [100.000] µ̂JP 10.281

 
"̂0 =

 [ σ̂2
IQ

 
 σ̂IQ,JP] = [189.600 23.392] σ̂JP,IQ σ̂2

JP 23.392 8.206

Throughout this section, I use a numeric subscript to index each data augmentation cycle, 
and the value of zero indicates that these parameter estimates are starting values that precede 
the fi rst I-step.

The initial I-step uses the elements in !̂0 and "̂0 to derive the regression equation that 
fi lls in the missing data. The necessary estimates are

 σ̂IQ,JP β̂1 = —–— (7.6)
 σ̂2

IQ

 β̂0 = µ̂JP – β̂1µ̂IQ (7.7)

 σ̂2
JP|IQ = σ̂2

JP – β̂2
1σ̂2

IQ (7.8)

where β̂0 and β̂1 are the intercept and slope coeffi cients, respectively, and σ̂2
JP|IQ is the resid-

ual variance from the regression of job performance on IQ. The means, variances, and covari-
ances that appear on the right side of the equations are elements from the mean vector and 
the covariance matrix.

To begin, substituting the appropriate elements of !̂0 and "̂0 into Equations 7.6 through 
7.8 produces the following regression estimates: β̂0 = –.057, β̂1 = 0.123, and σ̂2

JP|IQ = 5.320. 
Next, substituting the regression coeffi cients and the observed IQ scores into the bracketed 
terms in Equation 7.1 generates predicted job performance ratings for the 10 incomplete 
cases. The predicted scores fall directly on a regression line, so adding normally distributed 
residual terms restores variability to the imputed data. I used Monte Carlo simulation meth-
ods to generate these residuals from a normal distribution with a mean of zero and a variance 
equal to 5.320 (the previous residual variance estimate), and I subsequently added these 
terms to each predicted job performance rating. Table 7.2 summarizes the imputation steps 
and shows the predicted scores, residual terms, and the imputed values. Again, each imputed 
value is a random draw from a distribution of plausible job performance ratings that is con-
ditional on a particular IQ score.

The P-step is a standalone Bayesian analysis, the goal of which is to describe the poste-
rior distributions of the mean vector and the covariance matrix. To begin, the P-step uses the 
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complete data set from the preceding I-step to estimate the mean vector and the covariance 
matrix. The data in Table 7.2 yield the following estimates.

 
!̂1

 = [100.000] 10.063

 
"̂1 =

 [199.579 25.081] 25.081 7.270

Again, the numeric subscript denotes the fact that !̂1 and "̂1 are estimates from the fi rst data 
augmentation cycle.

The ultimate goal of the P-step is to sample new estimates of the mean vector and the 
covariance matrix from their respective posterior distributions, so that the next I-step can use 
these updated parameter values to construct a different set of regression coeffi cients. The 
posterior distribution of the covariance matrix depends on the sample size, the sample 
means, and the sum of squares and cross products matrix, #̂1 = (N – 1)"̂1. Substituting #̂1 
into Equation 7.3 gives the following posterior distribution.

 p("|!̂1, Y) ∼ W–1(N – 1, #̂1)

Next, I used Monte Carlo simulation to draw a new covariance matrix from this posterior. 
Procedurally, this amounts to programming a computer to generate a matrix of random num-
bers from an inverse Wishart distribution with 19 degrees of freedom and a sum of squares 

TABLE 7.2. Imputed Values from the Initial I-Step of the 
Bivariate Example

 Job Predicted Random Imputed
IQ performance score residual value

 78 — 7.567 1.247 8.814
 84 — 8.307 1.023 9.330
 84 — 8.307 –1.586 6.721
 85 — 8.430 1.285 9.716
 87 — 8.677 –0.228 8.449
 91 — 9.171 0.469 9.640
 92 — 9.294 –3.663 5.631
 94 — 9.541 –2.389 7.152
 94 — 9.541 –0.329 9.212
 96 — 9.787 –0.189 9.598
 99  7 — — —
105 10 — — —
105 11 — — —
106 15 — — —
108 10 — — —
112 10 — — —
113 12 — — —
115 14 — — —
118 16 — — —
134 12 — — —
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and cross products matrix equal to #̂1. Interested readers can consult Schafer (1997, p. 184) 
for specifi c programming instructions. Monte Carlo simulation generated the following co-
variance matrix.

 
"1* = [488.873 36.663] 36.663 7.493

Consistent with the previous section, the asterisk denotes the fact that the covariance matrix 
is a simulated estimate.

The sample means and the simulated covariance matrix defi ne the posterior distribution 
of the mean vector, as follows:

 p(!|Y, ") ∼ MN(!̂1, N–1"*1)

To draw a new estimate of the mean vector from its posterior, I used Monte Carlo simulation 
to generate two data points from a multivariate normal distribution with a mean vector of !̂1  
and a covariance matrix equal to N–1"*1. This gave the following estimates.

 
!1* = [87.929] 8.162

Conceptually, using computer simulation procedures to generate !*1 and "*1 is akin to add-
ing a random residual term to each element in !̂1 and "̂1. Regardless of how you think about 
it, this process yields new parameter values that randomly differ from the estimates that gen-
erated the regression coeffi cients at the initial I-step.

Having completed the fi rst cycle, data augmentation returns to the I-step and uses the 
simulated parameter values to generate a new set of imputations. To illustrate, I estimated the 
regression parameters for the second I-step by substituting the appropriate elements of !*1 
and "*1 into Equations 7.6 through 7.8. Doing so produced the following estimates: β̂0 = 
2.564, β̂1 = 0.075, and σ̂2

JP|IQ = 4.743. Table 7.3 shows the predicted scores, residual terms, 
and imputed values from the second I-step. As before, the bracketed terms in Equation 7.1 
generate the predicted job performance ratings for the 10 incomplete cases, and I augmented 
each predicted score with a random residual term from a normal distribution with a mean of 
zero and a variance equal to 4.743. The regression coeffi cients from the second I-step are 
randomly different from those at the previous I-step, so it follows that the imputations in 
Table 7.3 are different from those in Table 7.2.

The second P-step is procedurally identical to the fi rst. As before, the P-step uses the 
fi lled-in data to estimate the mean vector and the covariance matrix. The data in Table 7.3 
yield the following estimates.

 
!̂2

 = [100.000] 10.767

 
"̂2 =

 [199.579 18.624] 18.624 5.818
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The sample size, the sample means, and the sum of squares and cross products matrix defi ne 
the posterior distribution of the covariance matrix

 p("|!̂2, Y) ∼ W–1(N – 1, #̂2)

and using Monte Carlo simulation to generate a random draw from this distribution produced 
the following estimates:

 
"2* = [258.754 26.418] 26.418 7.929

The sample means and the simulated covariance matrix defi ne the posterior distribution of 
the mean vector

 p(!|Y, ") ∼ MN(!̂2, N–1"*2)

and I again used Monte Carlo procedures to draw a new pair of means from this distribution.

 
!2* = [101.277] 10.339

TABLE 7.3. Imputed Values from the Second I-Step of the 
Bivariate Example

 Job Predicted Random Imputed
IQ performance score residual value

 78 — 8.413 0.261 8.675
 84 — 8.863 1.358 10.221
 84 — 8.863 –1.576 7.287
 85 — 8.938 1.914 10.852
 87 — 9.088 –0.297 8.791
 91 — 9.388 2.725 12.113
 92 — 9.463 –0.510 8.953
 94 — 9.613 3.000 12.613
 94 — 9.613 –1.399 8.214
 96 — 9.763 0.865 10.628
 99  7 — — —
105 10 — — —
105 11 — — —
106 15 — — —
108 10 — — —
112 10 — — —
113 12 — — —
115 14 — — —
118 16 — — —
134 12 — — —
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As you might have guessed, the next I-step constructs a new regression equation from !*2 
and "*2 and uses this equation to generate another set of imputations. The subsequent P-step 
uses the parameter estimates from fi lled-in data (i.e., !̂3 and "̂3) to defi ne the posterior dis-
tributions, from which it draws yet another set of plausible parameter values.

Data augmentation repeatedly cycles between the I-step and the P-step, often for several 
thousand iterations. Unlike maximum likelihood estimation, the algorithm generates param-
eter estimates that randomly vary across successive P-steps, so the elements in !* and "* 
never converge to a single value. For example, Table 7.4 shows the simulated parameters 
from the fi rst 20 P-steps of the bivariate analysis. Notice that the estimates randomly bounce 
around from one cycle to the next and never land on a stationary value. This is true for every 
parameter, including those associated with the complete IQ variable (i.e., µIQ and σ2

IQ). The 
random behavior of the parameter estimates across the P-steps leads to a very different defi -
nition of convergence and adds a layer of complexity that was not present with maximum 
likelihood estimation. I discuss the issue of convergence in considerable detail later in the 
chapter.

7.5 DATA AUGMENTATION WITH MULTIVARIATE DATA

The previous bivariate illustration is relatively straightforward because the missing values are 
isolated to a single variable. Applying data augmentation to multivariate data is typically more 

TABLE 7.4. Simulated Parameters from the First 20 P-Steps of the 
Bivariate Example

P-Step µ*IQ µ*JP σ2*IQ σ*JP,IQ σ2*JP

 1 87.929 8.162 488.873 36.663 7.493
 2 101.277 10.339 258.754 26.418 7.929
 3 105.008 11.088 234.612 35.607 9.631
 4 104.608 11.414 186.003 31.542 10.205
 5 100.621 11.080 311.717 38.136 9.161
 6 99.774 9.929 191.862 19.771 6.655
 7 95.161 9.959 316.123 34.109 7.641
 8 106.298 11.451 308.825 26.468 10.873
 9 99.470 9.862 218.068 18.509 10.136
10 102.117 11.976 349.522 27.239 13.159
11 99.774 10.797 221.643 –0.813 7.077
12 97.273 11.903 261.294 0.813 4.329
13 92.820 10.882 234.744 19.840 12.870
14 99.974 10.424 256.293 4.937 4.881
15 98.452 10.573 327.198 3.915 4.365
16 103.664 11.705 216.647 10.612 5.964
17 103.860 11.306 202.434 21.347 12.383
18 97.445 11.595 384.950 3.103 3.795
19 99.501 11.560 218.074 11.698 5.258
20 93.604 11.099 127.753 10.401 7.271
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complex because each missing data pattern requires a unique regression equation (or set of 
equations). Despite this complication, the basic procedure is the same and only requires a 
slight modifi cation to the I-step. To illustrate the changes to the I-step, I use the full data set 
in Table 7.1. Data augmentation with three variables is still relatively straightforward, but the 
logic of this example generalizes to data sets with any number of variables. Finally, note that 
the procedural details of the P-step are unaffected by the shift from bivariate to multivariate 
data, so there is no need for further discussion of this aspect of the procedure.

Not including the complete cases, there are three missing data patterns in Table 7.1: 
cases that are missing (1) job performance ratings only, (2) well-being scores only, and 
(3) both job performance and well-being scores. The presence of multiple missing data pat-
terns complicates the imputation process somewhat because each missing data pattern re-
quires a unique regression equation. To illustrate, Table 7.5 shows the regression equations 
for the three missing data patterns. Consistent with the bivariate example, the I-step uses the 
mean vector and the covariance matrix from the preceding P-step to estimate the regression 
coeffi cients and the corresponding residual variances. After constructing the regression equa-
tions, the algorithm generates predicted values by substituting the observed data into the 
relevant regression equation, and it augments each predicted score with a normally distrib-
uted residual term. Each regression equation now requires its own residual distribution, but 
the basic idea is the same as before. Finally, whenever two or more variables are missing, the 
residual distribution is multivariate normal with a mean vector of zero and a covariance ma-
trix equal to the residual covariance matrix from the multivariate regression of the incom-
plete variables on the complete variables. For example, the third missing data pattern (i.e., 
the subset of cases with missing job performance and well-being scores) requires residuals 
from a multivariate normal distribution with a covariance matrix equal to the residual covari-
ance matrix from the multivariate regression of job performance and well-being on IQ.

Estimating unique regression equations for each missing data pattern is the only pro-
cedural change associated with multivariate data. The number of missing data patterns can 
often be quite large, but a computational algorithm called the sweep operator simplifi es the 
imputation process. The sweep operator repeatedly applies a series of transformations to ! 
and " and yields new matrices that contain the desired regression coeffi cients and residual 
variances. A number of detailed descriptions of the sweep operator are available to readers 
who are interested in additional details (e.g., Dempster, 1969; Goodnight, 1979; Little & 
Rubin, 2002). The changes to the I-step have no bearing on the P-step, and the process of 
simulating new parameter values is identical to the earlier bivariate example.

TABLE 7.5. I-Step Regression Equations for a Multivariate Analysis

Missing variables Regression equation Residual distribution

Job performance JPi* = β̂0 + β̂1(IQi) + β̂2(WBi) + zi zi ∼ N(0, σ̂2
JP|IQ,WB)

Well-being WBi* = β̂0 + β̂1(IQi) + β̂2(JPi) + zi zi ∼ N(0, σ̂2
WB|IQ, JP)

Job performance JPi* = β̂0 + β̂1(IQi) + zi Zi ∼ MN(0, "̂JP,WB|IQ)
 and well-being WBi* = β̂0 + β̂1(IQi) + zi
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7.6 SELECTING VARIABLES FOR IMPUTATION

Deciding which variables to include in the imputation phase is an important aspect of a mul-
tiple imputation analysis. At a minimum, the imputation process should include any variable 
that you intend to use in a subsequent statistical analysis. Excluding an analysis model vari-
able will attenuate its associations with other variables, even if the data are MCAR or MAR. 
This underscores the importance of variable selection because an inadequate imputation 
model can introduce biases that would not occur in a maximum likelihood analysis. Fortu-
nately, including too many variables in the imputation process is unlikely to produce bias, so 
adopting a liberal approach to variable selection is usually a good strategy. The primary down-
side of including too many variables is the possibility of convergence problems (as an upper 
limit, the number of variables cannot exceed the number of cases).

In addition to including analysis model variables, the imputation phase should preserve 
any higher-order effects that are of interest in the analysis phase as well as any other special 
features of the data. In particular, researchers in the behavioral and the social sciences are 
often interested in estimating interaction (i.e., moderation) effects where the magnitude of the 
association between two variables depends on a third variable (e.g., a regression model where 
gender moderates the association between psychological well-being and job performance). In 
addition, many common statistical analyses address implicit interaction effects. For example, 
multiple group structural equation models and multilevel models do not necessarily contain 
interaction terms, but they do posit group differences in the mean structure, the covariance 
structure, or both. Regardless of whether the higher-order effect is an explicit part of the 
statistical analysis or a hidden feature of the data, it is necessary to specify an imputation 
model that preserves any complex associations among the variables. Again, failing to do so 
can bias the subsequent analysis results, regardless of the missing data mechanism. I address 
this topic in detail in Chapter 9, but for now, it is important to raise awareness of the issue.

Chapter 5 introduced the idea of an inclusive analysis strategy that incorporates a num-
ber of auxiliary variables into the missing data handling procedure (Collins, Schafer, & Kam, 
2001). Recall that an auxiliary variable is one that is ancillary to the substantive research 
questions but is a potential correlate of missingness or a correlate of an incomplete analysis 
model variable. Methodologists have long recommended the use of auxiliary variables in a 
multiple-imputation analysis. For example, Rubin (1996, p. 479) stated that “the advice has 
always been to include as many variables as possible when doing multiple imputation.” Us-
ing auxiliary variables in a multiple imputation analysis is particularly straightforward be-
cause the variables only play a role in the imputation phase. Including auxiliary variables in 
the imputation process infuses the fi lled-in values with the auxiliary information, so there is 
no need to include the extra variables in the subsequent analysis phase. This is in contrast to 
maximum likelihood estimation, which incorporates auxiliary variables via the slightly awk-
ward saturated correlates approach. As an aside, multiple imputation can generally handle a 
larger set of auxiliary variables than a maximum likelihood analysis, so there is usually no 
reason to limit the number of auxiliary variables. Chapter 5 describes the process of identify-
ing auxiliary variables, so that information need not be reiterated here.

Finally, although it is important to include all analysis variables in the imputation phase, 
it makes no difference whether a particular variable will ultimately serve as an explanatory 
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variable or an outcome variable. For example, Chapter 8 illustrates a multiple regression 
analysis in which psychological well-being and job satisfaction predict job performance. Both 
predictor variables have missing data, but the imputation model uses the observed job per-
formance scores to impute the missing values. At fi rst glance, using an outcome variable to 
impute an incomplete independent variable may seem incorrect and somewhat circular. How-
ever, the addition of a random residual term to each imputed value eliminates any bias that 
might result from doing so (Little & Rubin, 2002). In fact, multiple imputation programs 
make no distinction between independent and dependent variables and only require you to 
specify a set of input variables.

7.7 THE MEANING OF CONVERGENCE

The data augmentation algorithm belongs to a family of Markov Chain Monte Carlo (i.e., 
MCMC) procedures (Jackman, 2000). The goal of a Markov chain Monte Carlo algorithm is 
to simulate random draws from a distribution (e.g., random draws from the posterior distri-
bution or from the distribution of missing values). Repeatedly cycling between the I- and 
P-steps creates a so-called data augmentation chain, as follows:

 Y1*, θ1*, Y2*, θ2*, Y3*, θ3*, Y4*, θ4*, . . . , Yt*, θt*

where Yt* represents the imputed values at I-step t and θt* contains the simulated parameter 
values at P-step t. Over the course of a long enough chain, the I-step generates imputations 
from a large array of plausible parameter values, so the Yt* values are effectively drawn from 
a distribution that averages over the entire range of the posterior distribution. Similarly, the 
P-step generates parameters from a large number of plausible Yt* values, so the simulated 
parameters form a posterior distribution that averages over all possible values of the missing 
data.

Simulating random draws from a distribution requires a new defi nition of convergence. 
Whereas maximum likelihood converges when the parameter estimates no longer change 
across successive iterations, data augmentation converges when the distributions become 
stable and no longer change in a systematic fashion (i.e., the distributions become station-
ary). The complicated aspect of this defi nition is that each step in the data augmentation 
chain is dependent on the previous step. That is, the simulated parameters at P-step t de-
pend on the imputed values at the preceding I-step, the imputations at I-step t + 1 depend 
on the simulated parameters from P-step t, the simulated parameters at P-step t + 1 depend on 
the imputed values at I-step t + 1, and so on. Although the behavior of the data augmenta-
tion algorithm is seemingly random from one cycle to the next, the mutual dependence of 
the I- and P-steps induces a correlation between the simulated parameters from successive 
P-steps. By extension, analyzing data sets from successive I-steps is inappropriate because the 
resulting imputations are also dependent (i.e., imputations from adjacent I-steps do not origi-
nate from a stable distribution).

Researchers often assess convergence by determining the number of data augmentation 
cycles that need to lapse before the imputations at iteration t + k are independent of those 
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at iteration t. Monitoring the behavior of the simulated parameter values across a large num-
ber of P-steps is one way to do this. For example, suppose that 10 data augmentation cycles 
separate two sets of simulated parameter values, θt* and θt*+10. A correlation between θt* and 
θt*+10 suggests that the posterior distribution is systematically changing after 10 cycles. Con-
sequently, analyzing data sets that are separated by only 10 data augmentation cycles is inap-
propriate because the imputed values are also dependent. In contrast, suppose that θt* is 
uncorrelated with the simulated parameters from 50 cycles later in the chain. The lack of 
correlation suggests that θt* and θt*+50 originate from a stable posterior distribution, so the 
two sets of parameter values should produce independent imputations. From a practical per-
spective, this implies that at least 50 data augmentation cycles need to separate the data sets 
that you analyze in the subsequent analysis phase.

7.8 CONVERGENCE DIAGNOSTICS

Methodologists have proposed dozens of techniques for assessing the convergence of data 
augmentation, the majority of which are computationally complex and diffi cult to implement 
(e.g., Gelman & Rubin, 1992; Geweke, 1992; Geyer, 1992; Johnson, 1996; Mykland, Tierney, 
& Yu, 1995; Ritter & Tanner, 1992; Roberts, 1992; Zellner & Min, 1995). A comprehensive 
review of convergence diagnostics is beyond the scope of this chapter, but interested readers 
can consult Cowles and Carlin (1996) for an overview of some of these procedures. I focus 
primarily on the use of graphical displays (time-series plots and autocorrelation function 
plots) because these methods are readily available in multiple imputation software packages. 
Graphical techniques are certainly not foolproof, but they are straightforward to implement 
and are relatively easy to understand.

Assessing convergence requires an exploratory data augmentation chain. The purpose of 
the exploratory analysis is to gather the simulated parameter values from a large number of 
P-steps and use graphical displays to examine their behavior (the literature sometimes refers 
to this as an output analysis). Establishing guidelines for the length of the exploratory chain 
is diffi cult because a number of factors infl uence convergence speed (e.g., the missing data 
rate, the choice of starting values for the mean vector and the covariance matrix). Running 
the data augmentation algorithm for several thousand cycles is probably suffi cient in most 
situations, but data sets with a large proportion of missing values may require longer chains. 
In this section, I use the small data set in Table 7.1 to illustrate graphical diagnostic tech-
niques. I generated an exploratory data augmentation chain of 5,000 cycles and saved the 
simulated parameters from each P-step to a fi le for further analysis. As you will see, the infor-
mation from this exploratory analysis is important for planning the fi nal data augmentation 
chain that generates the imputed data sets.

What Does EM Tell You about Convergence?

Using the EM algorithm (an algorithm that generates maximum likelihood estimates of the 
mean vector and the covariance matrix; see Chapter 4) to estimate the mean vector and the 
covariance matrix is a useful precursor to a multiple imputation analysis. EM estimates make 
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good starting values for data augmentation because they tend to be representative of the 
posterior distribution. Consequently, data augmentation will generally converge more rapidly 
from a set of EM starting values. In addition, the number of EM iterations is a useful diagnos-
tic for assessing convergence. Schafer and colleagues (Schafer, 1997; Schafer & Olsen, 1998) 
suggest that EM converges more slowly than data augmentation, so researchers often esti-
mate convergence speed by doubling the number of EM iterations. This approach is far from 
ideal, and blindly relying on the “two times the number of EM iterations” rule of thumb is 
not a good way to assess convergence. Nevertheless, the EM algorithm is a good starting 
point. Returning to the data in Table 7.1, note that the EM algorithm converged in 60 itera-
tions, so data augmentation may require even fewer cycles to converge. However, doubling 
the number of EM iterations can provide a more conservative initial guess about convergence 
speed.

7.9 TIME-SERIES PLOTS

A time-series plot displays the simulated parameter values from the P-step on the vertical 
axis and the data augmentation cycles along the horizontal axis. To illustrate, consider the 
exploratory data augmentation chain that I generated from the small job performance data 
set. Figure 7.3 shows time-series plots for the job performance and the psychological well-
being means. I arbitrarily chose to plot the parameter values from the fi rst 200 data augmen-
tation cycles, but did so after inspecting the plots over the entire chain. The top panel of 
Figure 7.3 suggests that the well-being means bounce around in a seemingly random fashion 
with no discernible long-term trends. The absence of trend is an ideal situation and suggests 
that this parameter quickly converges to a stable distribution. In contrast, the bottom panel 
of the fi gure shows a time-series plot that is somewhat less ideal (though not bad). Specifi -
cally, notice that the job performance means exhibit systematic upward and downward 
trends that last for 40 iterations or more. These systematic trends suggest that this parame-
ter’s posterior distribution requires at least 40 P-steps to converge (i.e., 40 data augmentation 
cycles need to lapse before the simulated parameters become independent). I examined the 
time-series plots for all of the means and covariance matrix elements, and they were largely 
consistent with those in Figure 7.3.

Figure 7.3 emphasizes that the simulated parameters can converge at different rates. For 
example, the job performance mean systematically wandered up and down while the well-
being mean settled into a random pattern almost immediately. Perhaps not surprisingly, the 
missing data rate—or more accurately, the fraction of missing information—is responsible 
for these differences. The fraction of missing information quantifi es the proportion of a pa-
rameter’s sampling error that is due to missing data. I describe this concept in more detail in 
Chapter 8, but you can think of missing information as a measure that combines the missing 
data rate and the magnitude of the correlations among the variables. For example, the frac-
tion of missing information and the proportion of missing data are roughly equal when vari-
ables are uncorrelated, but the missing information is typically less than the missing data rate 
when variables are correlated because the shared variability among the variables mitigates the 
loss of information.
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Because the fraction of missing information tends to vary across the elements in the 
mean vector and the covariance matrix, you should attempt to examine time-series plots for 
every parameter that is affected by missing data. Paying particularly close attention to param-
eters with high rates of missing information (i.e., high missing data rates) is a good idea be-
cause these parameters tend to converge most slowly. Multivariate data sets often have a 
prohibitively large number of covariance matrix elements, so the fraction of missing infor-
mation can serve as a screening device for identifying the most important time-series plots 
(multiple imputation programs typically report these values). As shown in the next chapter, 
the fraction of missing information infl uences the magnitude of the multiple-imputation 
standard errors, so inspecting these values is often useful in and of itself.

Worst Linear Function

In addition to inspecting the behavior of individual parameters, it is useful to examine a 
summary measure that Schafer (1997) terms the worst linear function of the parameters. The 
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FIGURE 7.3. Time-series plots for the simulated well-being and job performance means. The top 
panel shows a time-series plot that exhibits no systematic trends. The bottom panel shows systematic 
trends that last for 40 iterations or more.
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worst linear function combines the simulated parameters from each P-step into a single 
composite that weights each parameter according to its convergence speed. The idea behind 
the worst linear function is to create a summary measure that converges more slowly than 
the individual parameters, so the time series plot of the worst linear function should provide 
a conservative gauge of convergence speed. However, Schafer (1997) cautions that the worst 
linear function is not a defi nitive diagnostic tool, because other combinations of the simu-
lated parameters may converge at an even slower rate.

The worst linear function is a weighted sum of the simulated parameters at P-step t

 WLFt = %T$t* (7.9)

where $t* is a column vector that contains the simulated parameter values and % is a weight 
vector that quantifi es the change in the corresponding maximum likelihood estimates at the 
fi nal EM iteration. Parameters that converge slowly exhibit the greatest change at the fi nal 
iteration, so % assigns larger weights to parameters that converge slowly. The complete-data 
parameters do not change at the fi nal EM iteration, so they do not contribute to the function 
(the weights are zero for these parameters). Finally, note that the worst linear function can 
take on positive or negative values because it centers the parameters in $t* at their maximum 
likelihood estimates.

With regard to the exploratory data chain from the small job performance data set, Fig-
ure 7.4 shows the time-series plot of the worst linear function. Notice that the function ex-
hibits systematic upward and downward trends that last for approximately 50 iterations. 
Taken together, Figures 7.3 and 7.4 suggest that the joint posterior distribution is stable (i.e., 
the simulated parameter values are no longer dependent) after about 50 data augmentation 
cycles, although certain parameters (e.g., the well-being mean) converge far more rapidly. 
From a practical perspective, this implies that at least 50 data augmentation cycles need to 
separate the data sets that you analyze in the subsequent analysis phase. Doubling or tripling 
this number provides an extra margin of safety.
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7.10 AUTOCORRELATION FUNCTION PLOTS

The systematic trends in the previous time-series plots suggest that certain parameters are 
serially dependent across successive data augmentation cycles. The autocorrelation quanti-
fi es the magnitude and duration of this dependency and is an important diagnostic tool for 
assessing convergence. The lag -k autocorrelation is the Pearson correlation between sets of 
parameter values separated by k iterations in the data augmentation chain. To illustrate, re-
consider the exploratory chain of 5,000 data augmentation cycles that I generated from the 
data in Table 7.1. The Lag-1 columns of Table 7.6 show the simulated job performance 
means from P-steps 1 through 10 and 4,991 through 5,000. Notice that the one row (i.e., 
one data augmentation cycle) offsets the parameter values, such that the mean at P-step 2 is 
coupled to the mean at P-step 1, the mean at P-step 3 is linked to the mean at P-step 2, and 
so on. Computing the Pearson correlation between the 4,999 pairs of parameter values gives 
the lag-1 autocorrelation, r1 = 0.61. This correlation indicates that the job performance mean 
at P-step t is highly dependent on the mean at the preceding iteration. Computing additional 
lag-k correlations can help determine the duration of this dependency. For example, Table 7.6 
also shows data excerpts for the lag-2 and the lag-3 autocorrelations. The lag-2 autocorrela-
tion quantifi es the dependency between estimates separated by two iterations (e.g., the mean 
from P-step 3 is linked to the estimate from P-step 1, the mean at P-step 4 is coupled with 
the mean from P-step 2, and so on), and the lag-3 autocorrelation separates the simulated 

TABLE 7.6. Data for the Lag–1, Lag–2, and Lag–3 Autocorrelations

 Simulated values Parameter values for autocorrelation computations

P-step µ*JP   Lag-1 Lag-2 Lag-3 

 1  8.16  8.16 —  8.16 —  8.16 —
 2 10.34 10.34  8.16 10.34 — 10.34 —
 3 11.09 11.09 10.34 11.09  8.16 11.09 —
 4 11.41 11.41 11.09 11.41 10.34 11.41  8.16
 5 11.08 11.08 11.41 11.08 11.09 11.08 10.34
 6  9.93  9.93 11.08  9.93 11.41  9.93 11.09
 7  9.96  9.96  9.93  9.96 11.08  9.96 11.41
 8 11.45 11.45  9.96 11.45  9.93 11.45 11.08
 9  9.86  9.86 11.45  9.86  9.96  9.86  9.93
 10 11.98 11.98  9.86 11.98 11.45 11.98  9.96
 … … … … … … … …
4991 10.66 10.66 11.29 10.66 10.88 10.66  9.53
4992 11.11 11.11 10.66 11.11 11.29 11.11 10.88
4993 12.13 12.13 11.11 12.13 10.66 12.13 11.29
4994 10.54 10.54 12.13 10.54 11.11 10.54 10.66
4995 11.22 11.22 10.54 11.22 12.13 11.22 11.11
4996 10.63 10.63 11.22 10.63 10.54 10.63 12.13
4997  9.94  9.94 10.63  9.94 11.22  9.94 10.54
4998 12.17 12.17  9.94 12.17 10.63 12.17 11.22
4999 11.79 11.79 12.17 11.79  9.94 11.79 10.63
5000 11.34 11.34 11.79 11.34 12.17 11.34  9.94
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parameter values by three iterations. The estimates of the lag-2 and lag-3 correlations are r2 
= 0.52 and r3 = 0.46, respectively.

An autocorrelation function plot (also known as a correlogram) is a graphical sum-
mary that displays the autocorrelation values on the vertical axis and the lag values on the 
horizontal axis. For example, Figure 7.5 shows the autocorrelation function plots for the job 
performance and the well-being means. The horizontal dashed lines represent the two-tailed 
critical values for an alpha level of 0.05 (Bartlett, 1946). The top panel of Figure 7.5 shows 
that autocorrelation in the well-being means drops to within sampling error of zero almost 
immediately. This suggests that the parameter’s distribution becomes stable after a very small 
number of data augmentation cycles. In contrast, the bottom panel of the fi gure shows auto-
correlations that exceed chance levels (i.e., fall outside the critical values) for nearly 60 data 
augmentation cycles. This suggests that the posterior distribution of the job performance 
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FIGURE 7.5. Autocorrelation function plots (correlograms) for the simulated well-being and job 
performance means. The top plot shows autocorrelations (denoted by a triangle symbol) that drop to 
within sampling error of zero almost immediately. The bottom plot shows nonzero autocorrelations 
that persist for nearly 60 iterations.
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mean requires approximately 60 data augmentation cycles to become stationary. As an aside, 
autocorrelations are subject to considerable sampling fl uctuation, so data augmentation 
chains that are several thousand cycles in length will provide the best assessment of serial 
dependencies.

Figures 7.3 and 7.5 are largely consistent with one another. For example, the time-series 
plot indicates that the job performance mean has systematic trends lasting for at least 40 data 
augmentation cycles, and the corresponding autocorrelation plot indicates serial dependen-
cies that last for approximately 60 iterations. In contrast, both plots suggest that distribution 
of the well-being mean stabilizes almost immediately. Taken together, the diagnostic infor-
mation suggests that the slowest parameters are stationary (i.e., become independent) after 
about 60 iterations, although some distributions are stable well before that. Again, multiply-
ing this value by a factor of two or three is a conservative strategy for planning the fi nal data 
augmentation run.

7.11 ASSESSING CONVERGENCE FROM ALTERNATE
STARTING VALUES

Thus far, I have only considered using EM estimates as starting values for data augmentation. 
EM estimates are ideal in the sense that they are often located near the center of the posterior 
distribution. However, methodologists disagree on whether a single set of starting values is 
suffi cient for assessing convergence (Gelman & Rubin, 1992; Geyer, 1992; Raftery & Lewis, 
1992). For example, Raftery and Lewis (1992) argue that a single exploratory data augmenta-
tion chain is usually suffi cient, whereas Gelman and Rubin (1992) recommend using mul-
tiple exploratory data augmentation chains, each of which uses starting values for ! and " 
that are far from the center of their respective posterior distributions.

Multiple exploratory chains are useful for assessing whether idiosyncratic features of the 
data infl uence convergence and can yield a more conservative gauge of convergence speed. 
However, generating alternate starting values can be computationally complex and diffi cult to 
implement (Gelman & Rubin, 1992). One straightforward approach is to use the bootstrap 
to generate starting values for each exploratory data augmentation chain (Schafer, 1997). The 
bootstrap treats the data as a miniature population from which it draws samples of size N 
with replacement (see Chapter 5 for additional information on the bootstrap). The bootstrap 
procedure can generate a small number of alternate estimates of the mean vector and the 
covariance matrix. Because the ultimate goal is to start data augmentation with parameter 
values that are far from the center of their posterior distributions, the bootstrap estimates 
should be somewhat noisy and unrepresentative of their true values. To accomplish this, 
Schafer (1997) recommends drawing bootstrap samples with half as many cases as the origi-
nal data set because the additional sampling error is likely to yield estimates from the tails of 
the posterior distribution. After generating a small number of alternative starting values, you 
can run multiple exploratory data augmentation chains and use graphical diagnostic tech-
niques to examine the convergence of each chain. Some multiple imputation programs gen-
erate bootstrap starting values, so implementing this approach is relatively straightforward.
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7.12 CONVERGENCE PROBLEMS

You may occasionally encounter situations in which data augmentation fails to converge. For 
example, Figure 7.6 shows what the time-series and autocorrelation function plots would 
look like when data augmentation fails to converge. The times-series plot indicates the pres-
ence of systematic trends lasting for several hundred iterations, and the autocorrelation func-
tion plot shows serial dependencies that persist for an extended period (e.g., the lag-200 
correlation is approximately r200 = 0.70).

Convergence problems can occur because some of the parameters are inestimable or 
because the number of variables is close to the number of cases. Eliminating the problematic 
variables is one way to solve convergence problems, but this solution may not be ideal, par-
ticularly if it alters the substantive research goals. An alternate strategy is to use a so-called 
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FIGURE 7.6. Time-series and autocorrelation function plot for parameters that do not converge. The 
top panel shows a time-series plot that exhibits systematic trends that last for hundreds of iterations 
and simulated parameter values that are outside of the plausible score range of 1 to 20. The bottom 
panel shows autocorrelations (denoted by a triangle symbol) that are close to r = 0.70 at lag-200.
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ridge prior distribution for the covariance matrix. The basic idea behind the ridge prior is 
to add a small number of imaginary data records from a hypothetical population where the 
variables are uncorrelated. Adding these extra cases can stabilize estimation and eliminate 
convergence problems. Chapter 9 describes the ridge prior in more detail.

7.13 GENERATING THE FINAL SET OF IMPUTATIONS

After assessing convergence, you can begin planning the data augmentation run that will 
generate the imputed data sets for the subsequent analysis phase. As I explained previously, 
an important objective of the imputation phase is to generate data sets that mimic indepen-
dent draws from the distribution of the missing values. There are two strategies for generat-
ing independent imputations: sample imputed data sets at regular intervals in the data aug-
mentation chain (e.g., save and analyze the imputed data set from every 200th I-step), or 
generate several data augmentation chains and save the imputed data at the fi nal I-step in 
each chain. The multiple imputation literature refers to these two approaches as sequential 
and parallel data augmentation chains, respectively.

Sequential Data Augmentation Chains

One way to generate independent imputations is to sample imputed data sets at regular in-
tervals in a single data augmentation chain (e.g., save and analyze the data from every 200th 
I-step). The literature sometimes refers to this approach as sequential data augmentation. 
The diffi culty with sequential data augmentation is determining the number of iterations that 
need to lapse between each saved fi le (i.e., the number of between-imputation iterations). 
Choosing too large an interval is not a problem, but specifying too few between-imputation 
iterations can result in correlated imputations and negatively biased standard errors. Fortu-
nately, the time-series and autocorrelation function plots provide the necessary information 
to specify the number of between-imputation iterations. For example, if the longest serial 
dependency lasts for 20 data augmentation cycles, then the between-imputation interval 
should be at least 20 iterations. Again, the graphical diagnostics are far from perfect, so dou-
bling or tripling that value is probably a safe strategy.

To illustrate sequential data augmentation, reconsider the data in Table 7.1. Suppose 
that the goal is to generate m = 20 complete data sets for the subsequent analysis phase. The 
graphical diagnostics from the earlier example suggest that the slowest parameters converged 
(i.e., became independent) after about 60 iterations, so between-imputation interval should 
be at least 60 cycles, if not longer. Specifying 200 between-imputations is probably suffi cient 
because this interval is more than three times larger than the slowest convergence rate. Con-
sequently, the fi nal data augmentation chain consists of 4,000 cycles. Specifi cally, an initial 
burn-in period of 200 cycles precedes the fi rst data set, and 200 between-imputation cycles 
separate each of the remaining data sets. The burn-in iterations give the parameter distribu-
tions time to stabilize, and the between-imputation iterations ensure that the resulting im-
putations are independent.
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Parallel Data Augmentation Chains

Parallel data augmentation is a second method for generating independent imputations. 
Rather than saving data sets at specifi ed intervals in the chain, this approach generates sev-
eral chains and saves the imputed data at the fi nal I-step in each chain. For example, generat-
ing 20 imputations from the data in Table 7.1 would require 20 separate data augmentation 
chains, each of which is comprised of 200 iterations. The m chains can originate from a com-
mon set of starting values or from different estimates of the mean vector and the covariance 
matrix. The primary consideration is to generate chains that are long enough to ensure that 
the distribution of missing values has stabilized and that the imputations are independent of 
the starting values. As with sequential approach, graphical diagnostics can determine the 
length of the data augmentation chains.

Methodologists have debated on whether to use sequential or parallel data augmenta-
tion chains. Much of this discussion centers on the detection of convergence problems (e.g., 
Gelman & Rubin, 1992; Geyer, 1992; Raftery & Lewis, 1992), but computational effi ciency 
is also a consideration (e.g., Schafer, 1997, pp. 137–138; Smith & Roberts, 1993). If the pa-
rameter distributions converge properly, it probably makes little difference whether a single 
chain or multiple chains generate the fi nal imputations. Because sequential chains are some-
what easier to implement in existing software packages, the fi nal decision may be one of con-
venience. My advice is to explore convergence using a relatively small number of parallel chains 
that originate from a diverse set of starting values. If you are comfortable that the algorithm 
is converging properly, choose a conservative number of burn-in and between-imputation 
iterations and generate the fi nal set of imputations from a single data augmentation chain.

7.14 HOW MANY DATA SETS ARE NEEDED?

Choosing the number of imputed data sets to save and analyze is one of the most basic deci-
sions in a multiple imputation analysis. Conventional wisdom suggests that multiple imputa-
tion analyses require relatively few imputations, and the literature historically recommends 
between three and fi ve imputed data sets (e.g., Rubin, 1987, 1996; Schafer, 1997; Schafer & 
Olsen, 1998). However, there are good reasons to use many more imputations. In the next 
chapter, I show that multiple imputation standard errors decrease as the number of imputa-
tions increases, and analyzing an infi nite number of imputed data sets yields the lowest pos-
sible standard error. Obviously, it is not feasible to analyze an infi nite number of data sets, 
but this property suggests that using a large number of imputations can improve power. 
Power issues aside, some of the multiparameter signifi cance tests outlined in Chapter 8 be-
come more accurate as m increases, so analyzing a large number of data sets can improve the 
validity of these tests.

Relative Effi ciency

The recommendation to use between three and fi ve data sets follows from the fact that the 
resulting standard errors are not appreciably larger than their hypothetical minimum values. 
Relative effi ciency quantifi es the magnitude of a multiple imputation standard error (or 
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more precisely the sampling variance, or squared standard error) relative to its theoretical 
minimum

 FMI RE = (1 + ——)–1

 (7.10)
 m

where m is the number of imputed data sets and FMI is the fraction of missing informa-
tion (Rubin, 1987). I describe the fraction of missing information in Chapter 8, but for now, 
you can think of it as being roughly equal to the proportion of missing data. To illustrate, 
suppose that m = 5 and the fraction of missing information for a particular parameter is 0.20 
(e.g., there is a 20% missing data rate). Equation 7.10 suggests that the sampling variance 
(i.e., squared standard error) based on an infi nite number of imputations is 96% as large 
as the sampling variance based on only m = 5 imputations. From a practical standpoint, this 
means that analyzing fi ve imputed data sets should produce a standard error that is only 
√1 + (0.20/5)  = 1.02 times larger than its hypothetical minimum value.

Table 7.7 shows the relative effi ciency and proportional increase in the standard error for 
different fractions of missing information and different numbers of imputations. The table 
shows two noticeable trends. First, the largest gains in effi ciency (or alternatively, largest re-
ductions in the standard error) occur between 3 and 10 imputations, and using more than 
10 data sets has little additional benefi t. Second, using a large number of imputations is most 
benefi cial when the fraction of missing information is large. Researchers have traditionally 
relied on relative effi ciency estimates such as those in Table 7.6 when choosing the number 
of imputations. Doing so has led to the common recommendation to analyze between three 
and fi ve imputed data sets. Interestingly, this common rule of thumb does not necessarily 
maximize power.

The Number of Imputations and Power

Graham, Olchowski, and Gilreath (2007) used computer simulation studies to show that 
the number of imputations has a more dramatic impact on power than it does on relative 

TABLE 7.7. Relative Effi ciency and Proportional Increase in Standard Error for 
Different Fractions of Missing Information and Numbers of Imputations

 m = 3 m = 5 m = 10 m = 20

FMI R.E. P.S.E. R.E. P.S.E. R.E. P.S.E. R.E. P.S.E.

0.10 0.97 1.02 0.98 1.01 0.99 1.00 1.00 1.00
0.20 0.94 1.03 0.96 1.02 0.98 1.01 0.99 1.00
0.30 0.91 1.05 0.94 1.03 0.97 1.01 0.99 1.01
0.40 0.88 1.06 0.93 1.04 0.96 1.02 0.98 1.01
0.50 0.86 1.08 0.91 1.05 0.95 1.02 0.98 1.01
0.60 0.83 1.10 0.89 1.06 0.94 1.03 0.97 1.01
0.70 0.81 1.11 0.88 1.07 0.93 1.03 0.97 1.02

Note. R.E. = relative effi ciency; P.S.E. = proportional increase in standard error; m = number of imputations; FMI 
= fraction of missing information. 
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effi ciency. For example, returning to Table 7.7, the combination of m = 5 and FMI = .50 yields 
a relative effi ciency value of .91. In contrast, Graham et al. show that the power for this set 
of conditions is 13% below its ideal value. Decreasing the number of imputations to m = 3 
reduces relative effi ciency to .86, but reduces power to 75% of its optimal level.

Contrary to conventional wisdom, the Graham et al. study indicates that using more 
than 10 imputations has a benefi cial impact on statistical power. Considered as a whole, 
their simulations suggest that 20 imputations are suffi cient for many realistic situations, and 
increasing the number of imputations beyond 20 will only affect power if the fraction of miss-
ing information is very high (e.g., FMI > 0.50). The Graham et al. study also shows that an 
analysis based on 20 imputations yields comparable power to a maximum likelihood analy-
sis, so generating a minimum of 20 imputed data sets seems to be a good rule of thumb for 
many situations.

Other Considerations

Power issues aside, there are other good reasons to use a large number of imputations. As I 
mentioned previously, analyzing a large number of data sets can improve the validity of the 
multiparameter signifi cance tests in the next chapter. In addition, the estimates of missing 
information that most imputation programs report can be very noisy when the number of 
imputations is small (Graham et al., 2007; Harel, 2007; Schafer, 1997), and stable estimates 
require between 50 and 100 imputations (Harel, 2007). Obtaining accurate estimates of the 
missing information is usually not an important analytic goal, but these estimates are useful 
for assessing the impact of missing data on standard errors. Taken as a whole, there are many 
issues to consider when deciding on the number of imputed data sets to save and analyze. 
Although m = 20 appears to be a good rule of thumb, increasing the number of imputations 
beyond this point is a good idea and often adds very little to the total processing time.

7.15 SUMMARY

Multiple imputation is an alternative to maximum likelihood estimation and is the other 
state-of-the-art missing data technique that methodologists currently recommend. The im-
putation approach outlined in this chapter makes the same assumptions as maximum likeli-
hood estimation—MAR data and multivariate normality—but takes the very different tack 
of fi lling in the missing values prior to the analysis. A multiple imputation analysis consists 
of three distinct steps: the imputation phase, the analysis phase, and the pooling phase. The 
imputation phase creates multiple copies of the data set (e.g., m = 20), each of which con-
tains different estimates of the missing values. The purpose of the analysis phase is to analyze 
the fi lled-in data sets. This step applies the same statistical procedures that you would have 
used had the data been complete. Procedurally, the only difference is that you perform each 
analysis m times, once for each imputed data set. Finally, the pooling phase uses Rubin’s 
(1987) rules to combine the m sets of parameter estimates and standard errors into a single 
set of results. Because of its complexity, the imputation phase was the primary focus of this 
chapter.
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The imputation phase uses an iterative data augmentation algorithm that consists of an 
I-step and a P-step. The I-step uses an estimate of the mean vector and the covariance matrix 
to build a set of regression equations where the complete variables for a given missing data 
pattern predict the incomplete variables for that pattern. Substituting the observed data into 
these equations generates predicted scores for the missing variables. The predicted scores fall 
directly on a regression surface, so the imputation procedure restores variability to the data 
by adding a normally distributed residual term to each predicted value. From a Bayesian 
perspective, each imputed value is a random draw from the conditional distribution of the 
missing values, given the observed data (i.e., draws from the posterior predictive distribu-
tion). However, from a procedural standpoint, the I-step amounts to stochastic regression 
imputation.

The ultimate goal of the imputation phase is to generate m complete data sets, each of 
which contains different estimates of the missing values. Creating unique sets of imputations 
requires different estimates of the mean vector and the covariance matrix at each I-step, and 
the purpose of the P-step is to generate these estimates. The P-step begins by using the fi lled-
in data from the preceding I-step to estimate the mean vector and the covariance matrix, after 
which it generates alternative parameter estimates by randomly drawing new values from 
their respective posterior distributions. Conceptually, the algorithm generates new parameter 
values by adding a random residual term to each element in the complete-data mean vector 
and covariance matrix. The subsequent I-step uses these simulated parameter values to con-
struct a new set of regression coeffi cients, and the process begins anew. Repeating the two-
step procedure a number of times generates multiple copies of the data, each of which con-
tains unique estimates of the missing values.

Unlike maximum likelihood estimation, data augmentation generates parameter values 
that constantly vary across successive P-steps. Although the behavior of the data augmenta-
tion algorithm is seemingly random from one cycle to the next, the parameter values and the 
imputations from successive iterations are correlated. Because the ultimate goal is to simu-
late independent draws from a distribution of plausible values, it is inappropriate to save and 
analyze the fi lled-in data sets from successive I-steps. One way to simulate independent 
draws from the distribution of missing data is to sample imputed data sets at regular intervals 
in the data augmentation chain (e.g., save and analyze the data from every 200th I-step). 
Time-series and autocorrelation function plots can help determine if the number of between-
imputation iterations is large enough to produce independent sets of imputed values.

The convergence diagnostics play an important role in planning the fi nal data augmen-
tation run that generates the complete data sets. Choosing the number of imputed data sets 
to save and analyze is one of the most basic decisions in a multiple imputation analysis. 
Conventional wisdom suggests that multiple imputation analyses require relatively few im-
putations, and the literature historically recommends between three and fi ve imputed data 
sets. However, contemporary research suggests that analyzing 20 data sets will maximize 
power in most situations. Although m = 20 appears to be a good rule of thumb, there is no 
downside (other than computer processing time) to using far more imputations (e.g., m = 50 
or m = 100).

The next chapter describes the analysis and pooling phases. The purpose of the analysis 
phase is to analyze the fi lled-in data sets from the preceding imputation phase. This step 
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consists of m statistical analyses, one for each imputed data set. The analysis phase yields 
several sets of parameter estimates and standard errors, so the goal of the pooling phase is to 
combine everything into a single set of results. Rubin (1987) outlined relatively straightfor-
ward formulas for pooling parameter estimates and standard errors. Because the analysis 
phase is relatively straightforward, most of Chapter 8 is devoted to the pooling phase and 
related inferential procedures. At the end of Chapter 8, I revisit some of the data analysis 
examples from Chapter 4 and illustrate how to analyze the data using multiple imputation.
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